A4taxi.ru

Бесплатное обслуживание автомобиля
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка тормозов электрогидравлических кранов

Регулировка тормозов электрогидравлических кранов

Все колодочные тормоза крана РДК-250 открываются и закрываются с помощью электрогидравлических толкателей типа Elhy или электромагнита переменного тока.

При смазке шарниров (болтовых соединений) тормозов, как указано в разделе 6, следует особенно обращать внимание на то, чтобы масло не попало на тормозной диск. Если все-таки масло попадет на тормозной диск, то его немедленно следует тщательно смыть с помощью растворяющего средства.

Колодочные тормоза с электрогидравлическими толкателями типа Elhy (рис. 9.3-1).

Рис. 9.3-1. Схема регулировки тормозов с электрогидравлическим толкателем.

Необходимое тормозное усилие поддерживается до тех пор, пока шток электрогидравлического толкателя находится на расстоянии приблизительно 10 мм от нижнего упора.

При проверке необходимо:

1. Открыть тормоз, при этом поршневой шток 1 поднимается в верхнее положение.

2. От верхней кромки кожуха откладывается вверх размер "а" равен 50 мм у электрогидравлического толкателя Bl 50 с или 60 мм у толкателя Bl 80 с и это место должно быть отмечено карандашом на поршневом штоке.

3. Тормоз замкнуть. В заторможенном состоянии измеряется расстояние " b " между отметкой и верхней кромкой кожуха.

4. Если расстояние " b " меньше чем 10 мм, то тормоз подрегулировать.

Максимальный размер " b " при регулировке тормоза равен 20мм у электрогидравлического толкателя В l 50 с или 25 мм у толкателя B l 80 с. При регулировке колодочного тормоза необходимо:

1. Отвинтить контргайку 3.

2. Подтянуть зажимную гайку 4.

При этом поршневой шток тормозного магнита 1 поднимается вверх. Тормозные колодки находятся при этом на тормозном диске. Зажимную гайку 4 затянуть настолько, чтобы было выдержано максимальное расстояние " b " между кожухом и отметкой.

3. Затянуть контргайку 3.

4. Открыть тормоз и отрегулировать установочные винты 5 и 6 и зафиксировать их соответствующими контргайками так, чтобы все 4 болта прилегали к рычагам или тормозным колодкам, не нарушая при этом их взаимное расположение. Расстояние между тормозным шкивом и тормозными колодками должно быть одинаковым. Отход тормозных колодок от шкива должен быть равномерным.

Колодочные тормоза с электромагнитом переменного тока (рис. 9.3-2, лебедка подъема стрелы).

Рис. 9.3-2. Регулировка тормоза с электромагнитом переменного тока.

(Лебедка подъема стрелы)

Тормозное усилие создается собственным весом сердечника электромагнита. Это возможно в том случае, если расстояние от оси пальца 2 рычага сердечника до нижней кромки плоскости прилегания электромагнита 1 к подрамнику находится в пределах 135…147 мм.

Настройка тормоза производится следующим образом:

1. При настройке отход тормозных колодок должен быть 1 мм.

Для этого необходимо настроить размер 135 (черная отметка) в замкнутом состоянии тормоза. Для этого необходимо отвинтить контргайку 3 и поворачивать специальную гайку 4. Если достигнут размер 135, надо фиксировать специальную гайку 4 контргайкой 3.

2. При открытом состоянии тормоза (отход колод равен 1 мм) отрегулировать установочные винты 5 и 6 и зафиксировать их соответствующими контргайками так, чтобы все 4 болта прилегали к рычагам или тормозным колодкам, не нарушая при этом их взаимное расположение. Расстояние между тормозным шкивом и тормозными колодками должно быть одинаковым. Отход тормозных колодок от шкива должен быть равномерным.

3. Настройка тормоза производится в соответствии с пунктами 1 и 2 тогда, когда достигнут максимальный размер 147 (красная отметка).

Колодочные тормоза с электромагнитом переменного тока (рис. 9.3-3, малый двигатель лебедки главного подъема).

Рис. 9.3-3. Регулировка тормоза с электромагнитом переменного тока.

(Малый двигатель лебедки главного подъема)

Тормозное усилие создается собственный весом сердечника электромагнита. Это возможно в том случае, если расстояние от оси пальца 2 рычага сердечника до нижней кромки плоскости прилегания электромагнита 1 к подрамнику находится в пределах 90…100 мм.

Настройка тормоза производится следующим образом:

1. При настройке отход тормозных колодок должен быть 0,9 мм. Для этого необходимо настроить размер 90 (черная отметка) в замкнутом состоянии тормоза. Для этого необходимо отвинтить контргайку 3 и поворачивать специальную гайку 4. Если достигнут размер 90, надо фиксировать специальную гайку 4 контргайкой 3.

2. При открытом состоянии тормоза (отход колодок равен 0,9 мм) отрегулировать установочные винты 5 и 6 и зафиксировать их соответствующими контргайками так, чтобы все 4 болта прилегали к рычагам или тормозным колодкам, не нарушая при этом их взаимное расположение. Расстояние между тормозным шкивом и тормозными колодками должно быть одинаковым. Отход тормозных колодок от шкива должен быть равномерным.

Читайте так же:
Как отрегулировать ручной тормоз на джетте

3. Настройка тормоза производится в соответствии с пунктами 1 и 2 тогда, когда достигнут максимальный размер 100 (красная отметка).

Если тормозная обкладка стерлась до крепежных заклепок, её надо заменить.

Использовать тормозную обкладку можно лишь с коэффициентом трения μ = 0,5.

После установки новой, тормозной обкладки тормоз следует отрегулировать, как описано выше.

При установке тормозов следует обращать внимание на то, чтобы тормозные колодки охватывали тормозные шкива по всей ширине.

Тормоз должен устанавливаться точно по оси тормозного шкива. Болты для крепления тормозов должны быть фиксированы шплинтами. Болты необходимо смазать смазкой.

Электрогидравлические толкатели

Электрогидравлические толкателиЭлектрогидравлический толкатель представляет собой комплексное устройство, состоящее из электродвигателя, центробежного насоса и гидроцилиндра с поршнем. Наибольшее распространение нашли серийные одноштоковые электрогидротолкатели с тяговыми усилиями от 160 до 1600 Н.

Тормоза с электрогидравлическими толкателями имеют следующие преимущества по сравнению с тормозами с электромагнитами: повышенная износоустойчивость (в несколько раз большая), отсутствие ударов при включении и отключении, плавкость процесса торможения, значительно меньшая масса электрогидротелкателя (в 4 — 5 раз сравнительно с тормозным электромагнитом серии КМТ), меньший расход электроэнергии (на 20 — 25 %), значительно меньший расход обмоточного провода (примерно в 10 раз), заклинивание тормозного устройства не приводит к вредным последствиям (у тормозах электромагнитов переменного тока в этом случае выходят из строя из-за перегрева катушки).

Серийно выпускаемые электрогидравлические толкатели рассчитаны на продолжительное включение и допускают при этом до 100 включений в час. При снижении ПВ до 60 % электрогидротолкатели допускают 700 включений в час.

Для крановых установок используют тормозные устройства серии ТКТГ с электрогидравлическими толкателями типа ТЭ-16, ТЭ-25, ТЭ-30, ТЭ-50, ТЭ-80, ТЭ-160 с номинальными усилиями соответственно 160, 250, 500, 800 и 1600 Н.

Электрогидравлический толкатель серии ТЭ

Рис. 1. Электрогидравлический толкатель серии ТЭ

У электрогидравлического толкателя ТЭ при включении электродвигателя 6, прикрепленного к корпусу толкателя 1, центробежный насос нагнетает рабочую жидкости под поршень 4, перемещающейся в цилиндре 3, и создает избыточное давление. В связи с этим поршень со штоком 2 поднимается, преодолевая внешнюю нагрузку, приложенную к штоку.

Шток воздействует на тормозное устройство и происходит растормаживание. Жидкость, находящаяся над поршнем, протекает в зону всасывавания насоса.

Электрогидравлический толкательПоршень остается в верхнем положении тех пор, пока работает электродвигатель. При выключении электродвигателя насос перестает работать, исчезает избыточное давление и поршень со штоком под действием внешней нагрузки (пружины тормозного устройства) и собственной силы тяжести опускается в исходное положение, что приводит к затормаживанию. Рабочая жидкость, вытесняемая поршнем из цилиндра протекает через рабочее колесо и каналы в полость над поршнем.

Следует иметь в виду, что у толкателей типов ТЭ — ТЭ-50, ТЭ-80 электродвигатель не заполнен рабочей жидкостью.

Недостатком электрогидравлических толкателей по сравнению с тормозными электромагнитами является их относительно большое время срабатывай, (время подъема штока — от 0,35 до 1,5 с, время опускания штока — от 0,28 до 1,2 с). Кроме того электрогидравлические толкатели не могут эксплуатироваться без периодической смены рабочей жидкости при категории размещения У, а также непригодны для категории ХЛ2. Однако указанные выше достоинства электрогидравлических толкателей обусловили их широкое применение для крановых механизмов.

На рис. 2 показан колодочный пружинный тормоз с электрогидравлическим толкателем.

Тормоз для крана с электрогидравлическим толкателем

Рис. 2. Тормоз для крана с электрогидравлическим толкателем: 1 — пружина, 2, 6 и 9 — рычаги, 3 — регулировочный болт, 4 тормозной шкив, 5 — тормозные колодки, 7-шток тормоза, 8 — палец, 10 — тяга, 11 — шток толкателя, 12 — толкатель

Колодочный тормоз ТКГ-160 с электрогидравлическим толкателем

Рис. 3. Колодочный тормоз ТКГ-160 с электрогидравлическим толкателем

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Приборы и устройства безопасности

Для регулирования равномерного отхода колодок от шкива электромагнит вновь ставят в замкнутое положение отжимной гайкой 4. Далее ослабляют контргайку 7 и вращением регулировочного винта 8 добиваются равномерного зазора между обеими колодками и шкивом. Величину зазора (0,4 —1,0 мм) определяют щупом или путем покачивания рычагов 9. После окончания регулировки винт 8 фиксируют контргайкой 7.

Читайте так же:
Как самому отрегулировать форсунки на мтз

Установочную длину замыкающей пружины измеряют линейкой с ценой деления 1 мм при незамкнутом якоре электромагнита. Расчетная величина тормозного момента тормоза приводится в заводской инструкции для каждого механизма крана. Этому моменту соответствует определенная длина замыкающей пружины при замкнутом тормозе, приводимая в инструкции на тормоз. Если длина пружины отличается от установочной, то гайку 3 удерживают ключом от вращения и вращают тягу 1 за квадратный хвостовик в ту или иную сторону, увеличивая или уменьшая длину пружины.

регулирование тормозов с электрогидравлическим приводом

Рис. 9. Регулирование тормозов с электрогидравлическим приводом:
а — общий вид; б — намеряемые параметры

Тормоза с приводом от ТКТГ регулируют (рис. 9, а) в той же последовательности, что и тормоза ТКТ. Отличия заключаются в том, что вместо хода электромагнита регулируют ход штока толкателя гайками 1, а длину пружины устанавливают гайкой 2 на тяге пружины. Равномерный отход колодок от тормозного шкива обеспечивается винтом 3. Шток 4 толкателя не должен доходить до нижнего упора при наложенных на шкив колодках. При этом необходимо обеспечить минимальное расстояние h, которое получается при вычитании из максимального расстояния Н (рис. 9, б), замеренного при поднятом до отказа штоке, установочного хода Рус, приведенного в табл. 6.

Машинист обязан ежедневно тщательно осматривать и регулировать тормоза крана!
В мостовых электрических кранах предусмотрены средства коллективной защиты от поражения электрическим током. В этих кранах применяют четыре системы питания электрических аппаратов: трех- или четырехпроводную сеть трехфазного переменного тока напряженней 220/380 В; двухпроводную сеть постоянного тока; двухпроводную сеть однофазного переменного тока напряжением 220 В; двухпроводную сеть однофазного переменного тока напряжением 12—36 В. Электрооборудование кранов относится к разряду установок с напряжением до 1000 В. Эксплуатация таких установок связана с серьезной опасностью поражения электрическим током.

Напряжение, под действие которого попал человек, зависит от вида касания к токоведущим частям: однофазное и двухфазное. При однофазном касании человек непосредственно соприкасается с частями электрооборудования, нормально или случайно находящимися под напряжением. Степень поражения человека при таком касании зависит от качества изоляции проводов сети, ее протяженности, а также от того, имеет ли электрическая сеть заземленную или изолированную нейтраль. При однофазном касании в сети с заземленной нейтралью человек попадает под фазовое напряжение, которое в 1,73 раза меньше линейного. Сила тока, протекающего через тело человека, будет зависеть от фазового напряжения, сопротивления тела человека и изоляции пола, на котором стоит человек. При двухфазном касании человек одновременно оказывается под напряжением двух различных фаз. В этом случае сила действующего тока зависит от линейного напряжения и сопротивления тела человека.

Для защиты обслуживающего персонала электроустановок (ГОСТ 12.4.011—87) применяют следующие технические средства: оградительные и изолирующие устройства; предохранительные устройства; устройства автоматического контроля и сигнализации, автоматического отключения, защитного заземления и зануления, понижения напряжения. При обслуживании электрооборудования мостовых электрических кранов помимо средств коллективной защиты обязательно применение средств индивидуальной защиты.

Тормоз колодочный с электромагнитным приводом

Одним из важных средств технического прогресса в промышленности и на транспорте является комплексная механизация трудоемких производственных процессов, без которой невозможны высокие темпы дальнейшего роста производительности труда. Известно, что простейший процесс производства вызывает необходимость пространственного перемещения грузов (предметов труда).

Всякая транспортная операция, так же как и передача грузов с одного вида транспорта на другой начинается и заканчивается, погрузочно-разгрузочными работами. Механизация тяжелых и трудоемких процессов – один из важнейших путей повышения производительности труда.

Комплексная механизация строительных работ, превращение стройки в непрерывный процесс монтажной сборки зданий и сооружений из изготовленных в заводских условиях узлов, конструкций и деталей, в первую очередь, сказались на профессии машиниста башенного крана, повысили ее значение, авторитет среди других строительных профессий.

В строительстве многоэтажного жилого здания, коммерческого объекта либо промышленного сооружения, где требуется регулярное поднятие и перемещение грузов значительной тяжести, без применения башенных кранов обойтись невозможно. Краны применяют для выполнения погрузочно-разгрузочных работ в портах, на причалах, складах и базах, строительных и монтажных площадках. Они участвуют в процессе монтажа промышленного оборудования и магистральных трубопроводов. С их помощью производят работы по ремонту линий электропередачи, мостов, зданий, сооружений и др.

Читайте так же:
Регулировка рулевой рейки сузуки свифт

Трудно переоценить значение кранов в строительном деле, выполняя практически все перемещения грузов по строительному объекту кран является ключевой и незаменимой частью строительства. Недаром непременным элементом современного пейзажа стал подъемный кран. Ведь именно с помощью башенного крана, мощной, мобильной и универсальной машины ведется основной монтаж строительных конструкций — ведущий процесс, который задает ритм, определяет последовательность производства остальных видов работ на стройке.

1. Устройство, принцип работы тормозов, регулировка тормозов

1.1 Тормоза ТКТ с короткоходовым электромагнитом МО

Тормоз колодочный ТКТ (ТК — тормоз колодочный, Т — с электромагнитным приводом переменного тока) предназначен для остановки и удержания валов механизмов подъемно-транспортного и другого оборудования в заторможенном состоянии при неработающем электродвигателе.

В зависимости от рода тока тормозные электромагниты делятся на: 1) переменного трехфазного тока — тип КМТ; 2) переменного однофазного тока — тип МО ; 3) постоянного тока — типы КМП, ВМ, МП и А.

Тормозные электромагниты изготовляют коротко- и длинноходовыми. Ходом электромагнита называется расстояние, на которое перемещается подвижная часть электромагнита при включении и отключении тока.

Принцип работы тормоза основан на использовании силы трения, возникающей от воздействия тормозного усилия между поверхностями двух деталей, одна из которых жестко связана с затормаживаемым валом, а вторая соединена с корпусом машины. Колодки двухколодочного тормоза расположены диаметрально относительно шкива и создают равное, но противоположное давление на вал, что исключает изгибающий момент.

На рисунке 1 показан автоматический, т.е. замыкающийся автоматически при выключении тока, двухколодочный пружинный тормоз типа ТКТ с короткоходовым электромагнитом переменного тока МО.

Рисунок 1 — Колодочный тормоз с короткоходовым электромагнитом МО:

1, 5 – вертикальные рычаги; 2 – скоба; 3 – короткоходовой электромагнит; 4 – якорь; 6 – головка болта; 7, 9 – пружины (основная и вспомогательная); 8 – шток; 10 – основание; 11 – колодки.

Вертикальные рычаги тормоза шарнирно соединены с основанием, а колодки шарнирно с этими рычагами. К верхнему концу рычага жестко прикреплена скоба, внутри которой расположены шток и пружина. На штоке, между скобой и концом рычага расположена вспомогательная пружина. Пружина, установленная между скобой и гайками, навинченными на шток, служит для замыкания тормоза, а вспомогательная пружина способствует отходу рычага с колодкой от тормозного шкива при растормаживании.

Короткоходовой электромагнит с якорем закреплен на рычаге, а его центр тяжести расположен справа от оси рычага. Поэтому момент, создаваемый силой тяжести электромагнита, стремится поворачивать рычаг по часовой стрелке и, следовательно, отводить правую колодку от тормозного шкива. При выключенном электромагните сжатая рабочая пружина с помощью скобы и штока стягивает верхние концы рычагов, вследствие чего обе колодки прижимаются к тормозному шкиву, и тормоз замыкается. При включении электромагнита якорь, притягиваясь к сердечнику, поворачивается по часовой стрелке относительно оси своего шарнира и нажимает на конец штока тормоза. В результате пружина сжимается еще больше, рычаги поворачиваются относительно своих нижних шарниров, и обе колодки отходят от тормозного шкива. Угол поворота рычага, определяющий величину радиального отхода правой колодки, зависит от величины зазора между головкой болта и его упором. Зазор этот устанавливается с таким расчетом, чтобы обеспечивался радиальный отход колодки на заданную величину. Для устранения возможности поворота колодок после их отхода от шкива в них установлены подпружиненные фиксаторы трения.

Рассмотрим однофазные магниты типа МО (рис.2).

Рисунок 2 — Тормозные электромагниты однофазный электромагнит МО:

1 — ярмо, 2 — короткозамкнутый виток, 3 — угольники, 4 — крышка катушки. 5, 12 — катушка, 6, IS — якорь, 7 — поперечная планка, 8 — щеки якоря, 9 — ось, 10 — стойка, 11 — корпус, 14 — штырь, 15 — втулка, 16 — пружина, 17 — крышка, 18 — шток тормоза

Тормозные электромагниты имеют две основные части: магнитопровод и обмотку возбуждения (катушку). Магнитопровод состоит из неподвижного ярма 1 и подвижного якоря 6, которые набираются из собранных в пакет изолированных листов электротехнической стали.

Пакет ярма склепан с двумя угольниками 3 и двумя опорными стойками 10. Катушка 5 электромагнита крепится на ярме с помощью крышки 4. На ярме укреплен короткозамкнутый виток 2, служащий для устранения вибрации и гудения электромагнита.

Читайте так же:
Регулировка стояночного тормоза ситроен ксара пикассо

Пакет якоря склепан с двумя щеками 8, которые через ось 9 шарнирно соединены со стойками 10. В прорези щек установлена поперечная планка 7. Планка при повороте якоря упирается в шток тормоза и перемещает его, обеспечивая отход колодок тормоза от шкива и растормаживание механизма.

При прохождении тока через укрепленную на ярме катушку возникает магнитное поле, под действием которого якорь притягивается к ярму и через систему рычагов растормаживает тормоз. Собственное время втягивания якоря составляет около 0,03 с, а время отпадания — около 0,015 с. Число включений магнитов допускается не более 300 в час при ПВ 40%.

Для устранения вибрации в магнитах типа МО применяют успокоитель в виде короткозамкнутого витка или кольца из толстой медной проволоки, вставленного в пазы подвижной части магнитопровода. Под действием переменного магнитного потока в этом витке индуктируется своя ЭДС и возникает довольно значительный ток, протекающий по короткозамкнутому витку. Благодаря этому электромагнит работает спокойно, без шума. При разрыве короткозамкнутого витка тормозной магнит будет сильно гудеть.

Однако, всем электромагнитам свойствен существенный недостаток: в начале движения якоря, когда требуется наибольшее усилие, магниты дают наименьшее усилие, а в конце хода, когда необходимо уменьшить усилие для ослабления удара, магнит развивает наибольшую силу.

У тормозных электромагнитов переменного тока могут сгореть катушки, если магнит включен, а сердечник не замкнулся (например, вследствие перекоса или заклинивания, при попадании грязи на поверхности ярма и сердечника), поэтому в настоящее время широкое распространение на кранах получают тормоза с электрогидравлическими толкателями.

1.2 Тормоза ТКТГ с электрогидравлическими толкателями ТЭГ-25

Тормоза с электрогидравлическими толкателями ( рис.3 ), свободны от недостатков, присущих электромагнитам, и обладают большей надежностью. Шток тормоза здесь также шарнирно соединен с большим плечом двуплечего рычага, установленного на тормозном рычаге. С меньшим плечом рычага соединена тяга, прикрепленная гайками к тормозному рычагу. Замыкание тормоза осуществляется усилием вертикальных пружин. При движении штока толкателя вверх рычаг поворачивается, сжимая пружины, а рычаг вместе с тормозной колодкой отходит от шкива до тех пор, пока упор не дойдет до основания. Затем отходит от колодки рычаг. Возврат поршня в исходное положение происходит под воздействием пружины.

Рисунок 3 – Тормоз ТКТГ

Устройство и принцип работы. Тормоз состоит из следующих основных частей: электрогидравлического толкателя 1, механической части. Механическая часть состоит из: опорной рамы 10, тормозной пружины в сборе с защитным кожухом 11 с таблицей тормозного момента, регулировочного болта пружины 3, верхнего рычага 2, тормозного и вспомогательного рычага 5, регулировочной тяги 4, тормозных колодок 6 с тормозными накладками 7, регулировочного болта колодки 8, регулировочного болта балансировки 9.

При выключенном электрогидравлическом толкателе под действием сжатой пружины рычаги прижимают колодки к поверхности тормозного шкива. Шток электрогидравлического толкателя при этом находится в нижнем положении. При включении электрогидравлического толкателя, его поршень выдвигает вверх шток. Рычаги, освободившись от действия пружин, расходятся, растормаживая шкив.

В электрогидравлических толкателях (ЭГТ) используется принцип создания гидравлического давления под поршнем, шток поршня получает при этом прямолинейное движение (рис. 4).

Рисунок 4 — Электрогидравлические толкатели типа ТЭГ:

1 — электродвигатель, 2 — корпус, 3 — центробежный насос, 4 — поршень, 5 — цилиндр, 6 — контрольная пробка, 7 — шток, 8 — резиновое уплотнение, 9 — пробка заливного отверстия, 10 — крышка,11 — панель зажинов

Электрогидравлический толкатель состоит из короткозамкнутого электродвигателя 1 и корпуса 2 с крышкой 10. На валу электродвигателя закреплен центробежный насос 3. В цилиндре 5 перемещается поршень 4. Шток 7 поршня соединяется с рычажной системой тормоза. На верхней крышке установлено резиновое манжетное уплотнение 8, препятствующее выходу масла при движении штока. Для подключения электродвигателя предназначена панель зажимов 11. Масло в электрогидравлический толкатель заливают через верхнее заливное отверстие, закрываемое пробкой 9. Пробка 6 служит для контроля уровня масла. Места соединения корпусных деталей толкателя уплотнены маслостойкими резиновыми кольцами.

Толкатель устанавливается вертикально штоком вверх, допустимое отклонение ± 15° при условии направления нагрузки вдоль оси штока.

Читайте так же:
Регулировка давления воды в гидроаккумуляторе насосной станции

Перед установкой электрогидравлических толкателей следует проверить сопротивление изоляции обмотки статора относительно корпуса электродвигателя и между фазами обмотки. Проверку изоляции следует производить мегомметром с напряжением 500 В. Сопротивление изоляции в холодном состоянии должно быть не менее 20 МОм. При меньшем сопротивлении изоляции двигатель нужно просушить при температуре не выше 100 °С, предварительно сняв его с толкателя. В горячем состоянии сопротивление изоляции должно быть не ниже 0,5 МОм. Далее нужно проверить, полностью ли заполнен толкатель рабочей жидкостью (трансформаторным маслом), и при необходимости долить сухое трансформаторное масло. Масло должно обладать электроизоляционным свойством — пробивное напряжение его должно быть не менее 20 кВ/мм. Причиной снижения пробивного напряжения может быть только попадание влаги или проводящей жидкости в масло. В этом случае масло требуется заменить, проверив изоляцию обмоток.

В сравнении с тормозными электромагнитами электрогидравлические толкатели обладают рядом преимуществ: размеры и масса их меньше по сравнению с аналогичными по рабочим параметрам электромагнитами, потребление электроэнергии также в несколько раз меньше. Величина напорного усилия гидротолкателя не зависит от положения поршня, в то время как у электромагнита усилие резко изменяется в зависимости от величины воздушного зазора между ярмом и якорем. С повышением внешней! нагрузки до величины максимального упорного усилия толкателя поршень останавливается. При этом не происходит ни перегрузки двигателя, ни механических повреждений элементов толкателя. С помощью электрогидравлического толкателя можно получать малые скорости привода.

К недостаткам электрогидравлических толкателей относятся существенное уменьшение усилия на штоке при отклонении геометрической оси толкателя от вертикали, большее по сравнению с электромагнитным приводом время срабатывания и изменение его величины в зависимости от температуры окружающего воздуха.

Тормоз регулируют в следующих случаях: когда он не затормаживает механизм при выключении двигателя или, наоборот, резко затормаживает механизм. При регулировании тормозов соблюдают следующую последовательность :

— устанавливают нормальный ход якоря электромагнита;

— регулируют равномерность отхода колодок от шкива;

— проверяют и устанавливают длину рабочей пружины.

Нормальный ход якоря электромагнита ( рис.5 ,а) устанавливают следующим образом.

Рисунок 5 — Регулирование тормозов ТКТ и ТКТГ:

а — хода якоря (у тормоза ТКТ), б — хода штока; 1 — тяга, 2 — гайка и контргайка, 3 — пружина вспомогательная, 4 — скоба, 5 — главная пружина, 6 — регулировочная гайка, 7 — отжимная гайка, 8 — корпус электромагнита, 9 — якорь электромагнита, 10 — катушка тормоза, 11 — контргайка, 12 — регулировочный болт, 13 — рычаги, 14 — электрогидротолкатель; А и Б — смежные заклепки

Расконтривают гайки 2, 6 и 7, находящиеся на тяге 1. Гайку 7 отвинчивают до тех пор, пока она не отожмет тягу от заднего рычага 13, а якорь электромагнита 9 не упрется в сердечник корпуса электромагнита 8.

В таком положении измеряют линейкой, как показано на рисунке, расстояние от наружного торца катушки, электромагнита до наиболее удаленной внешней поверхности якоря в нижней его части (Для электромагнита МО-100Б —это расстояние 25 мм, МО-200Б — 48,5 мм). После этого гайку 7 заворачивают с таким расчетом, чтобы она перестала упираться в рычаг, а конец тяги отжал якорь электромагнита.

В таком положении результат замера Н ( рис.6 ,а) должен быть равен сумме двух размеров: ранее полученного при замкнутом якоре и величины установочного хода якоря (Рут), взятой из характеристики тормоза по табл.1 (для электромагнита МО-100Б: 25+11 =36 мм; для электромагнита МО-200Б: 48,5 + 14 = 62,5 мм). Если результаты замеров отличаются от расчетных, необходимо отрегулировать отход якоря с помощью гайки 2 ( рис.5 ,а), находящейся на конце тяги. Тягу при этом удерживают от проворачивания за квадратный хвостовик на конце. При регулировании хода якоря можно замерять расстояние между соседними смежными заклепками, находящимися на якоре и корпусе магнита (точки А и Б). Величины хода якоря на уровне геометрической оси, соединяющей эти заклепки, даны в табл.1.

Таблица 1 — Установочные величины для регулирования тормозов типа ТКТ и ТКТГ

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector