A4taxi.ru

Бесплатное обслуживание автомобиля
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тиристорная схема регулятора тока для сварочного аппарата

Тиристорная схема регулятора тока для сварочного аппарата

  • 11 июля
  • 3013 просмотров
  • комментариев
  • 53 рейтинг

В этом материале рассмотрим способы регулировки сварочного тока. Схемы регуляторов тока для сварочного аппарата разнообразны. Они имеют свои достоинства и недостатки. Постараемся помочь читателю выбрать регулятор тока для сварочного аппарата.

Схема сварочного аппарата

Схема сварочного аппарата.

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Читайте так же:
Автоматическая регулировка мощности канала

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Читайте так же:
Электромагнитный тормоз как регулировать

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15 о С).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50. 90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Читайте так же:
Как отрегулировать карбюратор копейки

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

Реальная сила тока в сварочных аппаратах инверторного типа

Выбирая перед покупкой сварочный инвертор, одним из первых параметров, на который обращают внимание покупатели, является сила тока аппарата. Так уж сложилось, что украинский потребитель отдает предпочтение инструментам по-мощнее. И сегодня этим активно пользуется большинство производителей.

В этой статье мы хотим разобраться с указанной и реальной силой тока сварочных инверторов, рассказать, какие маркетинговые ходы используют производители, что бы вы отдали предпочтение именно их товару, а так же мы попробуем подсказать, какая реальная сила тока в сварочном инверторе потребуется, в зависимости от поставленных задач и условий работы сварочного аппарата.

На инверторе написано 250 Ампер, а по факту 180.

Здесь уместным будет вспомнить стихотворение рубаи с глубоким смыслом от Омара Хайяма:

Все, что видим мы — видимость только одна.

Далеко от поверхности моря до дна.

Полагай несущественным явное в мире,

Ибо тайная сущность вещей не видна.

Как правило, указанную на корпусе сварочного инвертора информацию, например ММА-200 или ММА-250, большинство расценивает как пресловутую силу тока, а ведь зачастую — это далеко не так. Особенно, если речь заходит про инверторы произведенные в Китае. На самом же деле, на практике — это маркетинговый ход производителей. Большинство таких аппаратов имеют реальную рабочую силу тока от 140 до 180 Ампер. А порой, встречаются инверторы с током и в 120 Ампер, на корпусе которых гордо указана цифра — 250. Более того, как правило, шкала регулировки тока, тоже подвергается модификации, получая градацию значений до 250 Ампер (которых по сути в инверторе нет), а это уже добавляет сложности пользователю в регулировке сварочного тока при работе с различными типами электродов, либо при регулировании уровня провара металла.

Поэтому первое что стоит запомнить при выборе сварочного инвертора, не ориентируйтесь на то что написано на панеле аппарата.

Как же понять — какая сила тока в том или ином инверторе?

Если этот показатель вам необходимо знать совершенно точно, тогда полезно будет раздобыть токоизмерительные клещи с датчиком Холла, тогда вы сможете проверить выдаваемый сварочным аппаратом ток прямо во время покупки, включив инвертор, установив на его регуляторе максимальное значение и померив ток, который может генерировать инструмент.

Читайте так же:
Синхронизация карбюраторов на бандите 400

Более того, одного замера тока недостаточно, ведь аппарат может выдать ток в 200 или 250 Ампер, но рабочим этот ток едва ли можно назвать. Здесь потребуется замер сварочного напряжения, и если при номинальном токе в 200 Ампер, напряжение окажется ниже требуемого, тогда рабочими 200 Ампер в сварочном инверторе назвать нельзя.

Стоит понимать что рабочее сварочное напряжение для различной силы тока будет отличаться, но посчитать необходимое не составит труда. Для этого нужно применить следующую формулу:

Рабочее сварочное напряжение=20+0,04*Сила тока аппарата

Так легко вычислить, что для аппарата в 160 Ампер напряжение должно составлять 26,4 Вольта; для 200А — 28В, а для 250А — 30В

Но как быть, если приборов нет, либо вы выбираете инвертор в интернет магазине?

Тогда нужно просто немного внимательней изучить другие характеристики. Правильно их сопоставив, вы сможете определить приблизительную к реальной силу тока сварочного выпрямителя.

1. Мощность, которую потребляет инвертор (ее указывают в киловаттах, — кВт)

Нужно понимать, что чем большую силу тока способен генерировать сварочный инвертор, тем больше ему для этого необходимо потребить электроэнергии. И если вы сравниваете похожие по конструкции сварочные устройства (например инверторные сварочные выпрямители на IGBT транзисторах), с одинаковым КПД (80-90%), тогда можно руководствоваться следующими соотношениями:

  • Сварочные инверторы, которые генерируют на выходе 160 Ампер, имеют максимальное потребление (мощность) — 5-5,5 кВт.
  • Если аппарат способен выдать около 200 Ампер, он максимально будет потреблять 6,5 — 7 кВт
  • При 250 Амперах — максимальная мощность потребления инвертором составит 8,5 — 9 кВт.

Другими словами, если в характеристиках указана сила тока 250 Ампер, и в то же время мощность не превышает 5,5 кВт, тогда, скорее всего, реальная производительность подобного сварочного инвертора составляет не более 160 Ампер.

2. Цена на сварочный инвертор

Конечно, наценка может различаться в зависимости от многих факторов: степени популярности и разрекламированности торговой марки, качества самих комплектующих, уровня наценки розничного магазина и прочих моментов, но все-же, исходя из цены на сварочный инвертор, можно сделать некоторые предположения о его производительности.

Как правило если цена инвертора составляет менее 2000 грн, тогда вряд ли стоит ожидать, что аппарат выдаст более 160 Ампер. Транзисторные сварочные аппараты с силой тока от 200 Ампер, находятся в ценовом диапазоне от 2500 до 3000 грн. А цена на инверторы, которые способны реально выдать 250 Ампер уверенно перескакивает 3000 грн.

Какая же сила тока нужна сварочному инвертору?

Здесь в первую очередь мы советуем оттолкнутся от тех задач, которые вы поставите перед аппаратом.

Читайте так же:
Реферат на тему регулировка карбюратора

Начните с вопроса: А нужно ли вам 250 Ампер?

Для справки: тока 160 ампер вполне достаточно для качественного провара металла толщиной 4 мм, ели вы будете использовать электрод диаметром 4 мм. Что уже говорить о электродах с меньшим диаметром.

Для того, чтобы более точно подобрать производительность инвертора в зависимости от толщины используемого электрода, предлагаем ознакомится со следующей таблицей.

Расчет трансформатора для сварочного полуавтомата, сварочного аппарата.

twitter.com facebook.com vkontakte.ru odnoklassniki.ru mail.ru digg.com friendfeed.com pikabu.ru blogger.com liveinternet.ru livejournal.ru google.com yahoo.com

всем здрасте,хочу намотать транс для ПА нашел ОСМ 1,6КВ ЖЕЛЕЗО П-ОБРАЗНОЕ местами отслоилось чем его можно склеить или просто стянуть.

роман

Можно клей БФ-2. Промазываете отслоенный пластины, потом стагиваете струбциной и в духовку для полимеризации клея.

спосибо за ответ.я измерил сердечник 32кв достаточно ли его и еще после всех расчетов получилось первичка 343витка ,вторичка87.железо п образное как лучше мотать транс,вторичку хочу со средней точкой

роман

Вы приняли коэффициент 50, а нужно 40, так как сердечник ПЛ. Вторичку тоже не понятно на какое напряжение рассчитали.

извиняюсь перещетал первичка 275,вторичка 37,5.вторичку ращитывал на 30врегулировку хочу через первичку пока не нашел динисторов

роман

По первичке лучше ступенями.

вторичка получается 21в этого будет достаточто? как лучше мотать транс каждую обмотку на своем керне или первичка, а на ней вторичку и если со средней точкой то надо два плеча по 37 витков

роман

Например первичка 200 витков. Делим ее по палам. Мотаем 100 витков на один керн, другие 100 витков на другой керн, соединяем эти обмотки последовательно.

Вторичка со средней точкой. Напряжение одной обмотки 30 вольт, количество витков например 26. Делим по палам получаем 13 витков содержит одна полу обмотка.

Потом берем 2 шинки и мотаем одновременно и равномерно на один керн 13 витков. Также 2 шинки 13 витков одновременно и равномерно на другой керн. Мотаем обе катушки в одну сторону, что бы получились катушки клоны.

Потом соединяем последовательно, как показано на рисунке.. (по моему правильно нарисовал )..

Вторичная обмотка со средней точкой для полуавтомата, схема подключения

все понятно проще мотать под диодный мост меньше возни,не могу догнать с отводами по первичке для регулировки ,если не затруднит

роман

Если делать по первичке ступенями, то..

240 витков первички = 32 вольта вторички.. максимальный ток

427 витков первички = 18 вольта вторички.. минимальный ток

Не знаю уместится ли у вас 427 витков первички + вторичка. Прикиньте, если уместится, то можно рассчитать.

Также можно сделать тиристорную регулировку по вторичке.

Какой вариант вы выберите решать вам. Схема с тиристорами есть, не моя и сам не делал.

я так и хотел сделать тиристорную регулировку по первичке все нашел кроме динисторов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector