A4taxi.ru

Бесплатное обслуживание автомобиля
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать простой регулятор тока для сварочного трансформатора

Как сделать простой регулятор тока для сварочного трансформатора

Как сделать простой регулятор тока для сварочного трансформатораВажной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.

Схема регулятора сварочного тока

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часы».

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Схема регулятора сварочного тока

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Как сделать простой регулятор тока для сварочного трансформатора

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Простой самодельный регулятор мощности для нагрузки на 220В (4001)

Схема самодельного регулятора мощности для паяльника или лампы освещения, построен на микросхеме К561ЛЕ5. Большинство регуляторов регулирует мощность на нагрузки от 90-100° и в сторону уменьшения. Отличие этого регулятора в том, что в максимальном положении лампа будет гореть ярче, чем при непосредственном включении в сеть.

Достигается это тем, что нагрузка питается от источника постоянного тока, аналогичного тому, что применяется на входах схем импульсных источников питания аппаратуры. То есть, напряжение из электросети поступает на выпрямительный мост с накопительным электролитическим конденсатором на выходе. На котором постоянное напряжение достигает 300V и более.

Принципиальная схема

Напряжение из электросети поступает через фильтр R7-C2-L1-L2-C3 на выпрямительный мост на диодах VD4-VD7. Напряжением с выхода этого моста питается микросхема D1 через параметрический стабилизатор R6-VD3. От этого же моста питается и нагрузка (лампа). Регулировка яркости лампы Н1 производится путем регулировки скважности импульсов тока через неё.

Принципиальная схема регулятора мощности для электропаяльника и лампы накаливания на 230В

Рис. 1. Принципиальная схема регулятора мощности для электропаяльника и лампы накаливания на 230В.

На микросхеме D1 сделан мультивибратор с регулируемой скважностью импульсов. Частота определяется цепью C1-R1-R2-R3-R4. Переменным резистором R3 регулируется скважность, то есть, широта импульсов на его выходе. При этом, подстроечными резисторами R1 и R2 устанавливаются пределы регулировки.

Впрочем, подстроечные резисторы R1 и R2 можно и исключить из схемы, заменив их перемычками. В этом случае регулировка будет от максимума до нуля.

Импульсы с выхода элемента D1.4 поступают на затвор ключевого полевого транзистора VT1. Он управляет питанием лампы накаливания Н1 или другой нагрузки, например, паяльника. В положении максимальной длительности положительных импульсов на его затворе лампа будет гореть существенно ярче, чем при непосредственном включении в электросеть.

Соответственно, и паяльник, если он является нагрузкой, будет нагреваться сильнее. Это свойство регулятора может быть полезно там, где нередко случается пониженное напряжение в сети. Регулятор поможет восстановить нормальную яркость лампы накаливания или температуру нагрева паяльника.

Данное устройство не пригодно для регулировки яркости светодиодных или люминесцентных ламп! А так же, непригодно, для питания различной аппаратуры. От него можно питать только лампы накаливания и маломощные нагревательные приборы.

Детали

Микросхему К561ЛЕ5 можно заменить на К176ЛЕ5, К561ЛА7, К176ЛА7, или зарубежные 4001,4011. Диоды 1N4148 можно заменить на КД522, КД521. Стабилитрон VD3 — любой на напряжение 12V. Диоды VD4-VD7 любые выпрямительные на напряжение не ниже 400V.

Транзистор IRF840 можно заменить на IBUZ90, КП707В2 и другие. Дроссели типа RLB1314 индуктивностью от 50 до 200мкГн. Впрочем, можно взять исправные дроссели от любого неисправного импульсного блока питания телевизора или другой аппаратуры.

При мощности лампы не более 200W не нужно устанавливать VT1 на радиатор. При необходимости работать с нагрузкой больше й мощности (но не более 2000W), во-первых, нужно установить транзистор VT1 на радиатор, а во-вторых, применить более мощные диоды в мостовом выпрямителе и более мощное сопротивление R7.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50. 90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

Регулятор мощности тиристорный, напряжение и схемы своими руками

Регулятор мощности тиристорный

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Тиристорный регулятор мощности для паяльника

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Принцип работы тиристорного регулятора

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

Характеристики тиристорных устройств

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Принцип тиристорного регулятора

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

Самостоятельное изготовление тиристорного регулятора

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Простые схемы тиристорного регулятора

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Фото 3

Регулятор напряжения

Фото 2

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

СНиП 3.05.06-85

Китайский РН на 220 вольт

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

НазваниеМощностьНапряжение стабилизацииЦенаВесСтоимость одного ватта
Module ME4000 Вт0-220 В6.68$167 г0.167$
SCR Регулятор10 000 Вт0-220 В12.42$254 г0.124$
SCR Регулятор II5 000 Вт0-220 В9.76$187 г0.195$
WayGat 44 000 Вт0-220 В4.68$122 г0.097$
Cnikesin6 000 Вт0-220 В11.07$155 г0.185$
Great Wall2 000 Вт0-220 В1.59$87 г0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

голоса
Рейтинг статьи
Читайте так же:
Сход развал точки регулировки
Ссылка на основную публикацию
Adblock
detector