A4taxi.ru

Бесплатное обслуживание автомобиля
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель постоянного тока регулировка оборотов схема подключения

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.
При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет «воспринимать» среднее значение подводимой к нему энергии.

Схема для генерации ШИМ сигнала

Существует много схем для генерации ШИМ сигнала. Одна из самых простых — это схема на основе 555-го таймера. Она требует минимум компонентов, не нуждается в настройке и собирается за один час.

генератор шим сигнала

Напряжение питания схемы VCC может быть в диапазоне 5 — 16 Вольт. В качестве диодов VD1 — VD3 можно взять практически любые диоды.

Если интересно разобраться, как работает эта схема, нужно обратиться к блок схеме 555-го таймера. Таймер состоит из делителя напряжения, двух компараторов, триггера, ключа с открытым коллектором и выходного буфера.

блок схема 555 таймера

Вывод питания (VCC) и сброса (Reset) у нас заведены на плюс питания, допустим, +5 В, а земляной (GND) на минус. Открытый коллектор транзистора (вывод DISCH) подтянут к плюсу питания через резистор и с него снимается ШИМ сигнал. Вывод CONT не используется, к нему подключен конденсатор. Выводы компараторов THRES и TRIG объединены и подключены к RC цепочке, состоящей из переменного резистора, двух диодов и конденсатора. Средний вывод переменного резистора подключен к выводу OUT. Крайние выводы резистора подключены через диоды к конденсатору, который вторым выводом подключен к земле. Благодаря такому включению диодов, конденсатор заряжается через одну часть переменного резистора, а разряжается через другую.

В момент включения питания на выводе OUT низкий логический уровень, тогда на выводах THRES и TRIG, благодаря диоду VD2, тоже будет низкий уровень. Верхний компаратор переключит выход в ноль, а нижний в единицу. На выходе триггера установится нулевой уровень (потому что у него инвертор на выходе), транзисторный ключ закроется, а на выводе OUT установиться высокий уровень (потому что у него на инвертор на входе). Далее конденсатор С3 начнет заряжаться через диод VD1. Когда она зарядится до определенного уровня, нижний компаратор переключится в ноль, а затем верхний компаратор переключит выход в единицу. На выходе триггера установится единичный уровень, транзисторный ключ откроется, а на выводе OUT установится низкий уровень. Конденсатор C3 начнет разряжаться через диод VD2, до тех пор, пока полностью не разрядится и компараторы не переключат триггер в другое состояние. Далее цикл будет повторяться.

Приблизительную частоту ШИМ сигнала, формируемого этой схемой, можно рассчитать по следующей формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 288 Гц.

Читайте так же:
Регулировка сцепления мтз 80 зазор лапок сцепления

ШИМ регулятор оборотов двигателя постоянного тока

Объединим две представленные выше схемы, и мы получим простую схему регулятора оборотов двигателя постоянного тока, которую можно применить для управления оборотами двигателя игрушки, робота, микродрели и т.д.

регулятор оборотов двигателя

VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1.

Вместо полевого транзистора можно использовать биполярный n-p-n транзистор, транзистор дарлингтона, оптореле соответствующей мощности.

Регулирование скорости двигателей постоянного тока

Регулирование скорости двигателей постоянного токаИз уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.

Схема включения двигателя постоянного тока независимого возбуждения

Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения

Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

Регулирование скорости двигателей постоянного токаПри втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .

Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Читайте так же:
Программы для автоматической синхронизации данных

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Регулятор оборотов двигателя постоянного тока 12 вольт

Регулятор вращения для мотора

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Регулятор вращения для мотора

Регулятор вращения для мотора

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Читайте так же:
Развал управляемых колес проверка и регулировка

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Регулятор вращения для мотора

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Регулятор вращения для мотора

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Регулятор вращения для мотора

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Регулятор вращения для мотора

Регулятор вращения для мотора

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Регулятор вращения для мотора

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Читайте так же:
Регулировка заднего колеса на горном велосипеде

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Регулятор вращения для мотора

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Принципиальная электрическая схема.

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Регулятор вращения для мотора

Регулятор вращения для мотора

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Регулятор вращения для мотора

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Электродвигатель постоянного тока

Двигатель постоянного тока – это агрегат, преобразующий энергию постоянного тока в механическое движение, чаще всего во вращательное.

Разновидности и виды двигателей постоянного тока (ДПТ)

В настоящее время известны следующие виды машин постоянного тока:

  • Униполярные (обладают низким КПД и потому не используются в обиходе);
  • Коллекторные (основная категория ДПТ);
  • Бесколлекторные (по сути, представляют собой модификацию коллекторных двигателей, где коллектор заменён на специальный электронный узел с инверторами).

Коллекторные ДПТ подразделяются на:

  • Универсальные (подходящие и для постоянного, и для переменного тока);
  • Одно-, двух-, трёх-, черытёх-, восьмиколлекторные (отличаются конфигурацией внутренних узлов и количеством фаз тока);
  • С постоянными магнитами;
  • С электрическими магнитами.

В свою очередь электромагниты могут работать по следующим схемам:

  • С независимым возбуждением;
  • С последовательным,
  • Параллельным,
  • Смешанным включением обмоток.

Основные узлы ДПТ

В основе всех электродвигателей, работающих на постоянном токе, лежит конструкция из статора и ротора:

Читайте так же:
Регулировка ближнего света ситроен

1. Статор (индуктор) представляет собой неподвижную конструкцию, на которой размещены постоянные магниты или электрические катушки, создающие электромагнитное поле. Минимальное количество полюсов – 2.

2. Ротор (он же якорь) – это вращающаяся конструкция. Обычно состоит из набора катушек, размещённых особым образом на центральной оси. На роторе должно быть не менее 2 магнитных полюсов.

3. Коллектор – это смежный узел, отвечающий за активацию питания той или иной катушки ротора. Чаще всего используется щёточная конструкция, где два контакта прижимаются к токопроводящим секторам (ламелям) на якоре.

Все основные элементы можно увидеть на схеме ниже.

Рис. 1. Двигатель постоянного тока

Для простоты понимания процесса работу ДПТ лучше всего рассмотреть на примере двухполюсного ротора.

Рис. 2. Двухполюсный ротор

При подаче положительного напряжения на обмотку (ротор), расположенную в поле действия магнита (статор), развёрнутого внутрь полюсом N, катушка порождает электромагнитное поле той же полярности. Катушка отталкивается от магнита и начинает своё движение. Когда катушка выходит из поля действия магнита, её контакт размыкается, и подача тока прекращается. В поле действия магнита входит другая катушка, в этот момент щётка коллекторного узла попадает на ламель новой катушки и теперь напряжение подаётся на неё. Процесс повторяется. Аналогично происходит с полюсом S.

Постоянные магниты можно заменить электрическими катушками, количество катушек на якоре и на роторе – увеличить. Коллектор можно заменить на электронный блок управления, который будет управлять подачей тока на определённые катушки, при этом текущий угол поворота вала будет анализироваться специальным датчиком.

Схема подключения зависит от количества используемых фаз (для многоколлекторных), а также от способа возбуждения (актуально для статоров с электромагнитами).

Рассмотрим подключение для ДПТ с электроиндукторами (статорами на электромагнитах):

1. Независимое подключение

Рис. 3. Независимое подключение

Независимые источники напряжения применяются для того, чтобы исключить возможные скачки в цепи питания при вращении ротора (потребление происходит волнообразно). Идеальна такая схема для точной регулировки оборотов.

2. Параллельное включение

Рис. 4. Параллельное включение

Отличается от независимого лишь тем, что обмотки статора и якоря (ротора) подключаются к одному и тому же источнику напряжения.

Наиболее распространённая схема соединения.

3. Последовательное включение

Рис. 5. Последовательное включение

Такой подход применяется в тех случаях, когда необходим плавный (мягкий) запуск электродвигателя. При последовательном включении ток, протекающий через катушки статора и ротора, будет одинаковым, и без нагрузки такая ситуация может вылиться в превышение номинальной частоты вращения. Нужно проявлять осторожность.

Рис. 6. Смешанное включение

Применяется крайне редко. Здесь одна или несколько обмоток статора подключаются параллельно, а остальные – последовательно.

Регулировка частоты вращения

Для изменения скорости вращения двигателей постоянного тока достаточно использовать регулировочные резисторы на правильных участках цепей.

Как и где установить сопротивления смотрите ниже.

Рис. 7. Регулировка частоты вращения

Чтобы заставить крутиться вал электродвигателя постоянного тока в обратном направлении, достаточно просто сменить полярность питания.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector